en • de
Home
R&D Highlights
Publications
Patents
|
Research & Development Highlights
► Acoustic Sensor Development
► Visualizing Wave Propagration
► Beamshaping and Beamforming
► Ultra-Broadband Acoustic Measurements
► Nonlinear Acoustics
Acoustic Sensor Development
|
Photos and figures from reference: New-Generation Ultrasonic Measurements for Quantitative Cement Evaluation in Heavy Muds and Thick-Wall Casings, SPE ATCE, SPE-181450-MS.
|
Ultrasonic nondestructive testing for environmental safety evaluation of subterrain wells such as PowerECHO* depends on robust ultrasonic transducers which operate reliably under extreme environmental conditions (temperatures exceeding 175°C and pressures exceeding 2000 bar). This requirement makes transducer development and construction very challenging. Laboratory studies and numerical simulations of complete ultrasonic transducer allow to fully understand internal and external wave propagation during wave emission and upon reception of reflected waves. Much effort has to be invested to obtain a good handle on non-trivial parameters for all of the transducer parts, using input from experimental data to calibrate effects such as frequency dependence of backing dampening and piezoelectric interactions. Such an in depth study allows capturing all relevant physical phenomena and results in a solid understanding of their impact on the measurement to ultimately engineer the sensor hardware to its best possible performance. Validation measurements covering the full muldi-dimensional space of possible environmental conditions were carried out to verify its proper performance.
* Mark of Schlumberger
- New-Generation Ultrasonic Measurements for Quantitative Cement Evaluation in Heavy Muds and Thick-Wall Casings
S. Thierry, C. Klieber, M. Lemarenko, J.-L. Le Calvez, T.M. Brill, T. Barrou, A. Hayman, F. Mege, and R. Van Os, SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September 2016, SPE-181450-MS.
- A calibration-free inversion algorithm for evaluating cement quality behind highly contrasting steel pipe
C. Klieber, and M. Lemarenko, IEEE International Ultrasonics Symposium, Tours, France, 19–21 September 2016, ULTSYM.2016.7728565.
- Ultrasonic Cement Logging: Expanding the Operating Envelope and Efficiency
S. Thierry, C. Klieber, M. Lemarenko, T. Brill, J.-L. Le Calvez, F. Mege, T. Barrou, and K. Constable, SPWLA 58th Annual Logging Symposium, Oklahoma City, Oklahoma, USA, June 17-21, 2017, SPWLA-2017-WWWW.
- Leading Edge Developments in Ultrasonic Logging Improves Cement Evaluation Quality in Extreme Conditions
C. Klieber, A. Timonin, K. Singh, J.-L. Le Calvez, S. Thierry, M. Lemarenko, and T. Brill, SPE Annual Caspian Technical Conference & Exhibition, Astana, Kazakhstan, 1–3 November 2016, SPE-182533-MS.
|
Understanding and Optimizing Measurements Through Wave Visualization
|
Photos and figures from reference: New-Generation Ultrasonic Measurements for Quantitative Cement Evaluation in Heavy Muds and Thick-Wall Casings, SPE ATCE, SPE-181450-MS.
|
Needle hydrophone measurements visualize full acoustic wave propagation of the flexural wave measurement as it is used in commercial cement evaluation services such as the IsolationScanner* and PowerFLEX*.
* Mark of Schlumberger
- Visualization of Leaky Ultrasonic Lamb Wave Experiments in Multilayer Structures
C. Klieber, S. Catheline, Y. Vincensini, T. Brill, and F. Mege,
International Congress on Ultrasonics, Metz, France (2015), Physics Procedia 70, Pages 314–317.
- Mapping of ultrasonic Lamb-wave field in elastic, layered structures using acoustic and laser probes
C. Klieber, and T. Brill, Proceedings of Meetings on Acoustics 30, 4aSAb-2 (2017).
- Effect of microannulus on ultrasonic pulse-echo resonance and flexural Lamb-wave cement-evaluation measurements
C. Klieber, T. Brill, M. Lemarenko, and S. Catheline, Proceedings of Meetings on Acoustics 30, 4aSAb-1 (2017).
- Reflection and Mode-Conversion of Ultrasonic Lamb Waves at Inaccessible Discontinuities in Layered Structures
T. Brill, and C. Klieber,
IEEE International Ultrasonics Symposium, Tours, France, 19–21 September 2016, ULTSYM.2016.7728587.
- Femtosecond imaging of nonlinear acoustics in gold
T. Pezeril, C. Klieber, V. Shalagatskyi, G. Vaudel, V. Temnov, O. G. Schmidt, and D. Makarov,
Optics Express, 22(4), pp. 4590-4598 (2014).
|
Beamshaping and Beamforming
|
Figures reproduced from reference: Narrow-Band Acoustic Attenuation Measurements in Vitreous Silica at Frequencies Between 20 and 400 GHz, C. Klieber et al., Appl. Phys. Lett. 98, 211908 (2011).
|
Beamshaping and Beamforming are powerful methods to focus acoustic or optical energy either spatially or into a certain frequency range. This opens up the possibility to conduct measurements examining small spatial features or when signal-to-noise levels would otherwise not allow it.
- Narrow-Band Acoustic Attenuation Measurements in Vitreous Silica at Frequencies Between 20 and 400 GHz
C. Klieber, E. Peronne, K. Katayama, J.D. Choi, M. Yamaguchi, T. Pezeril, and K. A. Nelson, Appl. Phys. Lett. 98, 211908 (2011).
- Optical Generation and Detection of Gigahertz-Frequency Longitudinal and Shear Acoustic Waves in Liquids: Theory and Experiment
C. Klieber, T. Pezeril, S. Andrieu, and K. A. Nelson, Journal of Applied Physics 112(1) 013502 (2012).
- Optical Generation of Gigahertz-Frequency Shear Acoustic Waves in Liquid Glycerol
T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, Phys. Rev. Lett. 102, 107402, (2009).
|
Ultra-Broadband Acoustic Measurements
|
Figures reproduced from reference: Toward broadband mechanical spectroscopy, T. Hecksher et al., Proceedings of the National Academy of Sciences 114(33), 2017.
|
Viscous liquids of all kinds, from honey to glycerol to common polymers, display remarkably similar dynamical properties upon cooling from high temperatures at which local structural relaxation and flow occur quickly, to moderate temperatures at which key components of the dynamics slow down dramatically, to cold temperatures at which a glassy solid is formed. The similarities suggest a common theoretical framework, but comprehensive measurements of liquids’ mechanical properties covering the extraordinary range of time scales spanned have been elusive. Using seven experimental methods covering 13 decades in frequency with few gaps, we demonstrate that broadband mechanical spectra are now within reach.
- Toward broadband mechanical spectroscopy
T. Hecksher, D. H. Torchinsky, C. Klieber, J. A. Johnson, J. C. Dyre, K. A. Nelson, Proceedings of the National Academy of Sciences 114(33), 2017.
- Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering
C. Klieber, T. Hecksher, T. Pezeril, D. H. Torchinsky, J. C. Dyre, and K. A. Nelson, Invited paper for special issue on "The Glass Transition", J. Chem. Phys. 138(12), 12A544 (2013).
|
Nonlinear Acoustics
|
Figures reproduced from references: Femtosecond imaging of nonlinear acoustics in gold, T. Pezeril et al., Optics Express, 22(4), 4590-4598 (2014) and Nonlinear Phasing and Dephasing of Three Wave Mixing of Acoustic Guided Waves, C. Klieber et al., Phys. Rev. E 88, 033204 (2013).
|
Our world is linear only in first approximation. For example, when one pulls on a spring or rubber band a little harder, the linear force-elongation relationship stops to be valid and the system first enters a reversible, nonlinear regime before it plastically deforms and ultimately fails (e.g. the rubber band tears). Nonlinear measurements in the elastic regime are a powerful tool in nondestructive testing to evaluate material properties, and detect alterations and damage to a sample. For example, we investigated the potential of such measurements for early signs of borehole failure by exploiting nonlinear tubewave (Stoneley wave) propagation.
- Nonlinear Phasing and Dephasing of Three Wave Mixing of Acoustic Guided Waves
C. Klieber, and D. L. Johnson, Phys. Rev. E 88, 033204 (2013).
- Nonlinear Acoustics at GHz Frequencies in a Viscoelastic Fragile Glass Former
C. Klieber, V. Goussev, T. Pezeril, and K. A. Nelson, Phys. Rev. Lett. 114, 065701, (2015).
- Femtosecond imaging of nonlinear acoustics in gold
T. Pezeril, C. Klieber, V. Shalagatskyi, et al., Optics Express, 22(4), pp. 4590-4598 (2014).
- Nonlinear femtosecond ultrasonics in gold probed with ultrashort surface plasmons
V. V. Temnov, C. Klieber, K. A. Nelson, et al., Nature Communications 4, 1468 (2013).
|
|